The unique Group of Order 7. It is Abelian and Cyclic. Examples include the Point Group and the integers modulo 7 under addition. The elements of the group satisfy , where 1 is the Identity Element. The Cycle Graph is shown above.

1 | |||||||

1 | 1 | ||||||

1 | |||||||

1 | |||||||

1 | |||||||

1 | |||||||

1 | |||||||

1 |

The Conjugacy Classes are , , , , , , and .

© 1996-9

1999-05-26